BOOLEAN ALGEBRA QUESTIONS

2009 Outside Delhi:

6. (a) State and verify absorption law using truth table.

2
(b) Write the equivalent Boolean Expression for the following logic circuit:

(c)Write the POS form of a Boolean function G, which is represented in a truth table as follows 1

\mathbf{U}	V	W	\mathbf{G}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

(d) (d) Reduce the following Boolean expression using K-map:
$\mathrm{H}(\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Z})=\sum(0,1,4,5,6,7,11,12,13,14,15)$

2008 Outside Delhi:

6. (a) State and Verify Absorption law in Boolean Algebra.
(b) Draw a logical circuit diagram for the following Boolean Expression: A.(B+C') 1
(c) Convert the following Boolean expression into its equivalent Canonical Product of sum form (POS): $\mathrm{A} \cdot \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \cdot \mathrm{B} \cdot \mathrm{C}+\mathrm{A}^{\prime} . \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
(d) Reduce the following Boolean expression using K-map: 3

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,4,5,8,9,10,11)
$$

2008 Delhi:

6. (a) State and verify De Morgan's law in Boolean Algebra.
(b) Draw a Logical Circuit Diagram for the following Boolean Expression. X^{\prime}.(Y'+Z) 1
(c) Convert the following Boolean expression into its equivalent Canonical Sum of Product Form (SOP): ($\left.\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}^{\prime}\right) .\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right) .\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}\right) .\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)$
(d) Reduce the following Boolean Expression using K-map.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,2,3,4,6,7,8,10,12)
$$

2007 Outside Delhi:

6. (a) State De Morgan's Theorems and verify the same using truth table.
(b) Write the equivalent canonical product of sum expression for the following sum of product expression: $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\sum(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{5})$
(c) Write the equivalent Boolean expression for the following logic circuit
(d) Reduce the following

Map :

2

$F(A, B, C, D)=,\Pi(5,6,7,8,9,12,13,14,15)$

2007 Delhi:

6 (a) State Distributive law and verify the same using truth table.
(b) Write the equivalent canonical product of sum expression for the following sum of product expression: $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\boldsymbol{\Pi}(\mathbf{1 , 3 , 6 , 7})$
(c) Write the equivalent Boolean expression for the following logic circuit

d) Reduce
the following Boolean expression using K -
Map :
$\mathbf{F}(\mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{Z})=\sum(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 0}, \mathbf{1 1})$

2006 Outside Delhi:

6. (a) State and verify Associative Law.
(b) Write the equivalent expression for the following Logic Circuit :

(c) Express $\mathrm{P}+\mathrm{Q}^{\prime} \mathrm{R}$ in POS form.
(d) Reduce the following Boolean expression using K - Map :

$$
\mathbf{F}(\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathrm{S},)=\Pi(0,3,5,6,7,11,12,15)
$$

2006 Delhi:

6. (a) State and verify Distributive Law.
(b) Write the equivalent expression for the following Logic Circuit :

(c) Express $\mathrm{P}+\mathrm{Q}^{\prime} \mathrm{R}$ in canonical SOP form..
(d) Reduce the following Boolean expression using K - Map :

$$
\mathbf{F}(\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S},)=\sum(0,3,5,6,7,11,12,15)
$$

2005 Outside Delhi

6. (a) State and verify Absorption Law in Boolean algebra.
(b) Write the equivalent expression for the following Logic Circuit :

(c) Write the POS form of a Boolean Function F, Which is represented by the following truth table:1

X	Y	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

(d) Reduce the following Boolean expression using K - Map :

$$
F(A, B, C, D,)=\sum(0,1,2,3,4,5,10,11,15)
$$

2005 Delhi:

6.(a) State and verify Associative law in Boolean Algebra.
(b) Write the equivalent Boolean expression for the following Logic Circuit:

(c) Write the SOP form of a Boolean Function F, Which is represented by the following truth table:1

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

(d) Reduce the following Boolean expression using K - Map :
$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=,\boldsymbol{(0 , 1 , 2 , 3 , 4 , 5 , 1 0 , 1 1 , 1 5)}$

2004:

6.(a) State and prove the Absorption law algebraically.
(b) Give the following truth table, derive a sum of product (SOP) and Product of Sum (POS) Form of Boolean expression from it:

A	B	C	$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

(c) Obtain a simplified form for the following Boolean Expression using Karnaugh Map:

$$
\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})=\sum(\mathbf{0}, \mathbf{1 , 2 , 4 , 5 , 7 , 8 , 9 , 1 0 , 1 1 , 1 4)}
$$

(d) Draw the logic circuit for a Half Adder using NAND gates Only. (Out of Syllabus now)

2003:

6. (a) State De Morgan's Laws. Verify one of the De Morgan's Laws using a truth table.
(b) Verify $X . Y^{\prime} Z+X . Y^{\prime} Z^{\prime}+X^{\prime} . Y^{\prime} Z=X . Y^{\prime}+Y^{\prime} . Z$ algebraically.
(c) Write the dual of the Boolean Expression: $\left(\mathrm{B}^{\prime}+\mathrm{C}\right) . \mathrm{A}$
(d) Obtain a simplified form for a Boolean Expression:

$$
F(\mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{Z},)=\sum(0,2,3,4,7,9,10,13,14,15)
$$

(e) Draw the logic circuit for a half adder. (Out of Syllabus now)

2002:

6. (a) State the Distributive law and verify the law using Truth table.
(b) Prove $X Y+Y Z+Y^{\prime} Z=X Y+Z$, algebraically. 2
(c) Obtain the simplified form, of a Boolean expression using Karnaugh map. 2
$\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})=\sum(\mathbf{2}, \mathbf{3}, \mathbf{6}, 10,11,14)$
(d) Represent the Boolean expression $(\mathrm{X}+\mathrm{Y})(\mathrm{Y}+\mathrm{Z})(\mathrm{X}+\mathrm{Z})$ with help of NOR gates only.
(e) Given the following truth table, write the product of sums form of the function.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

2001:
6. (a) State and verify Duality Principle.
(b) Prove algebraically: $x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z z^{\prime}+x . y^{\prime} z=x^{\prime}+y^{\prime}$
(c) If $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Pi(0,1,3,4,5,7,8,9,11,12,13,15)$, Obtain the simplified form using K-map.
(d) Seven inverters are cascaded one after another. What is the output if the input is 1 ?
(e) Given the following circuit:

What if the output if (i) both inputs are FALSE(0) (ii) one is FALSE and the other is TRUE.
(f) Derive the expression for a Full a Adder.

2000:

6. (a)State Absorption Laws. Verify one of the Absorption Laws using a truth table.
(b) Prove $X^{\prime} . Y^{\prime} Y^{\prime} . Z=X^{\prime} . Y . Z+X^{\prime} . Y^{\prime} . Z^{\prime}+X . Y^{\prime} . Z+X^{\prime} . Y^{\prime} . Z$ algebraically.
(c) Obtain simplified form for a boolean expression
$F(x, y, z, w)=\sum(1,3,4,5,7,9,11,12,13,15)$ using Karnaugh Map.
(d) Draw the logic circuit for a half adder.
(e) Represent the Boolean expression $X^{\prime} Y+Y^{\prime} Z$ with the help of NAND gates only.
(f) Write the Sum of Products form of the function $G(U, V, W)$. Truthe table representation of G is as follows:

\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{G}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

1999:
6.(a) State the distributive law. Verify the law using truth table.
(b) Prove $x+x^{\prime} y=x+y$ algebraically.
(c) Write the dual of the Boolean expression ($x+y$). $\left(x^{\prime}+y^{\prime}\right)$
(d) Minimise $F(w, x, y, z)$ using Karnaugh map.

$$
F(w, x, y, z)=\Sigma(0,4,8,12)
$$

(e) Draw the logic circuit for a half-adder. (Out of syllabus now)
(f) Represent the Boolean expression $(x+y)(y+z)(z+x)$ with the help of NOR gates only.

Q 6 (g) Write sum of product form of the function $F(x, y, z)$. The truth table representation for the function F is given below:

\mathbf{X}	\mathbf{y}	\mathbf{Z}	\mathbf{f}
0	0	0	0
0	0	1	$\mathbf{1}$
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

1998:

6 (a) State Demorgan's laws. Verify one of the Demorgan's laws using truth tables.
(b) Prove $X+Y^{\prime} Z=\left(X+Y^{\prime}+Z^{\prime}\right)\left(X+Y^{\prime}+Z\right)(X+Y+Z)$ algebraically.
(c) Write the dual of the Boolean expression $(\mathrm{U}+\mathrm{W})\left(\mathrm{V}^{\prime} \mathrm{U}+\mathrm{W}\right)$
(d) Obtain a simplified form for a Boolean expression:F(U, V, W,Z) $=\Sigma(0,1,3,5,7,9,10,11,12,13,14,15)$
(e) Draw the logic circuit for a half-adder. (Out of syllabus now)
(f) Represent the Boolean expression X+Y.Z' with the help of NOR gates only.
(g) Write the Product of Sum form of the function $\mathrm{H}(\mathrm{U}, \mathrm{V}, \mathrm{W})$, truth table representation of H is as follows:

\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{H}
$\mathbf{0}$	$\mathbf{0}$	0	1
$\mathbf{0}$	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Model Paper 1:

6. (a) State and verify Demorgan's Laws.
(b) Write the equivalent Boolean Expression for the following Logic Circuit

(c) Write the POS form of a Boolean function F, which is represented in a truth table as follows:1

\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{F}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(d) Reduce the following Boolean Expression using K-Map:

F(A,B,C,D) $=\Sigma(0,1,2,4,5,6,8,10)$

Model Paper 2:

6. (a) State and algebraically verify Absorbtion Laws.
(b) Write the equivalent Boolean Expression for the following Logic Circuit

(c)Write the SOP form of a Boolean function G, which is represented in a truth table as follows:1

\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{G}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	\rfloor

(d) Reduce the following Boolean Expression using K-Map:
$\mathrm{F}(\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Z})=\Pi(0,1,2,4,5,6,8,10)$
Other Important Paper:
6. (a) State and verify Distributive law in Boolean Algebra.
(b) Draw a logical circuit diagram for the following Boolean expression: A^{\prime}.(B+C) 1
(c) Convert the following Boolean expression into its equivalent Canonical Sum of Product Form (SOP): ($\left.\mathrm{U}^{\prime}+\mathrm{V}^{\prime}+\mathrm{W}^{\prime}\right) .\left(\mathrm{U}+\mathrm{V}^{\prime}+\mathrm{W}^{\prime}\right) .(\mathrm{U}+\mathrm{V}+\mathrm{W})$. 2
(d) Reduce the following Boolean Expression using K-Map: 3

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,5,7,9,11,12,13,14)
$$

ALL THE BEST

